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Trico-ordinate Phosphorus Compounds as Catalysts for the lsomerization of (Z)- 
to (€)-Azobenzene 

C. Dennis Hall * and Paul D. Beer 
Department of Chemistry, King's College, Strand, London WC2 21 S, UK 

The isomerization of  (Z) -azobenzene to (0 -azobenzene is catalysed by  trico-ordinate phosphorus 
compounds, Ar,P(OR),, where n = 0-2. The reaction is overall second order and for n = 1 and 2, 
the p values of -0.55 and -0.45, respectively, indicate a low degree of  charge separation in the 
transition state. Solvent effects confirm this conclusion and relative rates for n = 0-3 suggest that 
the transition state is a hybrid of  biphilic and polar components. 

The phenomenon of Z-E isomerism is exemplified by alkenes 
and azo compounds in which the rc-component of the respective 
carbon-carbon or nitrogen-nitrogen double bonds is resistant 
to rotation. Hence 2 and E compounds are normally well- 
defined geometrical isomers which can be interconverted by 
weakening of the double bond either by heat or light. 

A number of theoretical papers'q2 have discussed the 
interconversion of Z and E isomers of azobenzenes and 
concluded that isomerization occurs either by rotation about 
the central N=N bond, the 
planar variation of one of 
mechanism Ib. 

Ia 

Experimental evidence 

rotation mechanism Ia or by the 
the C-N-N angles, the inversion 

Ib 

has been provided for both 
mechanisms in the thermal, Z-E isomerization of azo 
compounds.3- ' In a later publication, Rau and Luddecke' 
provided unequivocal proof that the direct Z-E photo- 
isomerization of azo compounds could proceed via the 
inversion mechanism by synthesizing two azobenzenophanes (2 
and 3) in which Z-E isomerization by the rotation mechanism 
was blocked and then observing the Z-E isomerization of both 
spectroscopically. The authors went on to suggest that normal 
azobenzenes isomerize by a combination of both the rotational 
and inversional mechanisms. 

2 

3 

Studies of the interaction of the phosphorus atom and 
nitrogen-nitrogen double bonds have been mainly concerned 
with the reactions of alkyl or arylphosphines with diethyl azodi- 
carboxylate, used widely in the synthesis of sugars9' and nucleo- 
sidesgh and pentaco-ordinate phosphorus compounds' O.' ' (the 
Mitsonubo reaction). It was decided, therefore, that a kinetic 
study of the reactions of a variety of trico-ordinate phosphorus 

Table 1 
isomerization of 2-azobenzene in toluene at 38 "C" 

Second-order rate coefficients for the phosphinite-catalysed 

(XC,H,),POPr' k,/104 dm3 mol-' s-' 0 

X = p-Et,N, H 
X = 2 x p - M e 0  
X = p-Pr'O, H 
X = p-MeO, H 
X = 2 x rn-Me 
X = 2 x p-MeS 
X = 2 x H  
X = 2 x p-CF, 

12.6 
12.2 
8.32 
6.55 
5.08 
6.92 
5.75 
1.78 

- 0.90 
- 0.54 
-0.37 
-0.27 
-0.14 
- 0.047 

0 
1.08 

" Linear regression gives: log k, = -0.450 - 3.25 ( r  = 0.97). 

compounds with (2)-azobenzene to afford the E-isomer would 
provide some useful mechanistic information about the 
attack of the phosphorus atom at the nitrogen-nitrogen double 
bond. 

Results and Discussion 
(2)-Azobenzene was prepared by irradiation (Hg lamp) of 

the E-isomer and isolated by chromatography on neutral 
alumina.'' The reaction of la with phosphites 4, aryl phos- 

l a  4-6 

4 , n  = O  
5 , n  = 1  
6 , n  = 2  

phonites 5 or aryl phosphinites 6 were followed by observing the 
disappearance of the 2-azo chromophore at 440 nm. The 
experimental and kinetic results obtained were as follows. 

( a )  The rate of reaction was found to be overall second order, 
i.e. first order in trico-ordinated phosphorus and the Z -  
azobenzene (Table 4). 

(b) Using a variety of substituted phosphinites, a p value of 
-0.45 was calculated for toluene as solvent. Table 1 reports the 
second-order rate coefficient for each phosphinite and Fig. I 
shows the Hammett plot of log k ,  us. G the substituent 
constant derived from the ionization of arylcarboxylic acids in 
water. 

( c )  Similarly, a p value of -0.55 (Fig. 2) was obtained 
using aryl-substituted phosphonites and Table 2 gives the 
relevant rate coefficients. 

( d )  The relative rates (6; X = H):(5; X = H):4 in toluene at 
38 "C were 55: 7: 1. The rate with triphenylphosphine was not 
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Fig. 1 
with (2)-azobenzene. 

Plot of log X ; ,  i:s. (T for reaction of phosphinites, Ar,POPr', 
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Fig. 2 
(Z)-azo benzene. 

Plot of log k ,  us. (T for reaction of phosphinites, ArP(OPr'),, 

significantly different from the spontaneous (uncatalysed) rate 
of isomerization. 

( e )  A solvent sensitivity study was carried out on the system 
using the phosphinite (p-Pr'OC,H,)PhPOPr' as catalyst and 
the results using ethanol, dichloromethane, toluene and 
acetonitrile are reported in Table 3. 

( , f )  No intermediate phosphorus species was detected by 3 'P  
NMR spectroscopy during the reactions of 4 6  with (2)- 

Table 2 Second-order rate coefficients for the phosphonite-catalysed 
isomerization of (2)-azobenzene in toluene at 38 "C" 

XC,H,P(OPr'), k,/10-5 dm3 mol-' s-' 0 

X = p-Me,N 23.3 
X = p-PriOb 13.0 
X = p-Me 10.0 
X = H  7.09 
X = m-CF3 3.99 
X = p-CF3 4.74 

- 0.83 
-0.37 
-0.17 

0 
0.43 
0.54 

" Linear regression gives: log k ,  = -0.550 - 4.10 ( r  = 0.99). 
(Pr'O),P + (Z)-azobenzene in toluene at 38 "C, k ,  = 1.04 x 
mol-' s-'. 

For 
dm3 

Table 3 Second-order rate coefficients for the p-Pr'OC6H,PhPOPr'- 
catalysed isomerization of (a-azobenzene in various solvents at 38 "C 

Solvent k,/lO-, dm3 mol-' s-l 

C6HSCH3 8.32 
CH,CI, 11.7 
CH,CN 17.2 
EtOH 35.7 

azobenzene and there was no detectable reaction between the 
trico-ordinate phosphorus compounds and (E)-azobenzene 
over a period of ten days at ambient temperature. 

The kinetic results for the (Z)-azobenzene showed a 
remarkable similarity to those reported for trico-ordinated 
phosphorus compounds attacking the 0-0 linkage of 
peroxides.' 3-1 Both systems display low solvent effects and low 
Hammett p values.'3*'5 In fact, Lloyd obtained p values of - 
0.2, -0.4 and -0.4 for the reaction of diethyl peroxide with 
phosphonites, phosphinites and phosphines, respectively, in 
agreement with Baumstark's value of - 0.27 (best correlation 
with 0 ' )  for cleavage of the peroxide bond in tetramethyldiox- 
etane.', The low p values obtained for the (2)-azobenzene 
system suggest little charge development in the transition state 
(TS) and this conclusion is entirely consistent with a low 
sensitivity of the reaction to solvent polarity (Table 3). The 
reactivity sequence towards (a-azobenzene is also analogous 
to the sequence observed with diethyl peroxide as substrate.l3+' 
These reactivity trends contrast with sequences obtained for the 
Michaelis-Arbusov reaction by both Aksnes' ' and Edwards' 
who found Ph3P > Ph,POR > Ph P(OR), > P(OR)3 for the 
reactions with ethyl iodide and methyl iodide, respectively. 
Hence, if one views the latter trend as representing typical 
nucleophilic (S ,2 )  displacement reactions by trico-ordinate 
phosphorus, the (a-azobenzene and peroxide reactions must 
occur by a different mechanistic route. 

For the peroxide system the anomalous reactivity sequence 
and low degree of ionic character in the TS have been 
explained ' 3-1 b y proposing a biphilic mechanism in which the 
phosphorus displays both nucleophilic and electrophilic 
character in forming the TS. An analogous mechanism can be 
invoked to explain the kinetic results for the (a-azobenzene 
system. Thus, one can postulate the existence of a high energy 
intermediate 7 with both ionic and pentacovalent character, i.e. 
a resonance hybrid of three canonical forms 7a-t with 7b as a 
major contributor. Rotation about the N-N bond would lead to 
8 and hence to (E)-azobenzene. 

Such a rationalization explains the relative sequence since, 
for the phosphinites, the trigonal bipyramidal structure of 7b 
would require the three-membered ring to have the N atoms 
apical and equatorial to minimise ring strain which would place 
two phenyl groups equatorial (lower energy) and one alkoxy 
group apical (lower energy) as in 9. 

Three-membered ring phosphoranes, although unstable, are 
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known to exist as intermediates.” Furthermore, even in 
relatively polar transition states, as in the reaction of trico- 
ordinated phosphorus with S,” and the desulphurisation of 
trisulphides’ there is evidence (anomalous reactivity sequence) 
to suggest that the TS may have some pentaco-ordinate 
character. 

Assuming the isomerization of the (2)-azobenzene compound 
occurs after the formation of 7, both the rotation and/or the 
inversion mechanisms could be operative in the open chain 
forms (7a and 7c). Within the pentaco-ordinated form 7b, 
however, isomerization could only occur by the inversion 
mechanism provided the energy barrier for the process was 
small. Reports in the l i terat~re~’.’~ reveal that inversion 
barriers for diaziridine molecules 10 (R = alkyl or benzyl) are 
sufficiently great to enable the separation of the respective 
isomeric forms at room temperatures and above. Indeed, when 
R’  = R4 = Me, R Z  = R3 = PhCH, the AG* barrier to 
inversion is 27.3 kcal mol-’. 

However, much lower barriers to inversion are obtained for 
N-aryl aziridines (11)’“ and there are no reports of the 
successful separation of N-aryldiaziridine isomers at ambient 
temperature. Hence it is probable, assuming the pentaco- 
ordinate form 7b predominates in the intermediate, that 
isomerisation within this molecule would occur by the inversion 
mechanism. 

In conclusion, it is highly likely that the reaction of 
(a-azobenzene with acyclic trico-ordinated phosphorus com- 
pounds is mainly concerted, with the sign and size of the p 
values obtained indicating the existence of a small polar 
component in each reaction. At the very least one may state that 
if isomerization occurs oiu the dipolar intermediate 8 then very 
little charge is developed in the transition state leading to its 
formation. 

Table 4 
azobenzene in toluene at 38 “C“ 

Kinetic data for the reaction of Ph,P(OPr’) with (a- 

[Ph,POPr’] k,,/l@“ s-’ kz/10-4 dm3 mol-’ s-I 

0.50 2.85 5.7 
0.20 1.12 5.6 
0.10 0.59 5.9 
0.05 0.29 5.8 

“[Z-Ph,N,] = 6.7 x mol dm-3. *Average value of k ,  = 
(5.75 0.15) x dm3 mol-’ s-’. 

Experimental 
(Z)-Azobenzene.-(Z)-Azobenzene was prepared using the 

method of Cook.’’ (Q-Azobenzene (1 g, 5.5 x mol) in 
light petroleum (b.p. 40-60 “C) was irradiated for 30 min using a 
Hg vapour lamp. The resulting solution was filtered through an 
alumina column and the unchanged E-isomer washed through 
with light petroleum (100 cm3). The Z-compound remained 
adsorbed on the column and was subsequently eluted using 
light petroleum ( 1  50 cm3) containing 1-2% methanol. The 
methanol was removed by washing with water and the organic 
layer was dried over sodium sulphate. Filtration and removal of 
solvent under reduced pressure gave orange-red crystals (0.1 g, 
10%). Recrystallisation from light petroleum gave orange-red 
plates, m.p. 70-71 “C (lit.,” 71 “C). 

Trico-ordinate Phosphorus Compounds.-The diary1 phos- 
phinites, aryl phosphonites and triisopropyl phosphite were 
prepared and purified as described previously.’ 

The Reaction of Isopropj4 p- Isopropo.uyphenylphenylphos- 
phinite with (Z)-Azobenzene.-The phosphinite (0.17 g, 5.5 
x mol) in deuteriated benzene ( 1  cm3) was added to a 
solution of (Z)-azobenzene (0.1 g, 5.5 x lo-“ mol) in benzene (1 
cm3) in a 3’P NMR tube. 31P NMR spectra were taken every 
hour for 8 h and no phosphorus species, other than the reactant 
trico-ordinate, was detected. After 24 h, a final 31P NMR 
spectrum was taken with revealed one absorption at 6 = 105.2 
corresponding to the reactant phosphinite. 

The Catalytic Isomerization of (Z)- to (E)-Azobenzene br 
Phosphorus Nucleophi1es.-A stock solution of (Z)-azobenzene 
in dry ( LiAIH4) toluene (0.1 mol dm-3) was prepared and a Pye- 
Unicam 1700 spectrophotometer employed to observe the 
disappearance of the chromophore at 440 nm, characteristic of 
the Z-isomer. 

Pseudo-first-order conditions in trico-ordinate phosphorus 
were used in which a cuvette containing the phosphorus 
nucleophile in dry toluene (3 cm3, 0.5 mol dm-3) was 
thermostatted at 38 “C and 20 mm3 of the stock (Z)-azobenzene 
(0.1 mol dm-3) solution injected to give an absorption of 0.5 A 
with at least a twentyfold excess of trico-ordinate phosphorus 
compound over the substrate. 

First-order rate coefficients (kobs) were obtained from the 
gradients of plots of In ( A s  - A,) uersus time. Second-order rate 
constants ( k , )  were calculated by dividing the kobs values by the 
initial concentration of the phosphorus nucleophile. An 
example of the data obtained for isopropyl diphenylphosphinite 
is shown in Table 4. 
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